Question
Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral order.
For example,
Given the following matrix:
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
You should return [1,2,3,6,9,8,7,4,5]
.
Stats
Frequency | 2 |
Difficulty | 4 |
Adjusted Difficulty | 3 |
Time to use | ---------- |
Ratings/Color = 1(white) 2(lime) 3(yellow) 4/5(red)
Analysis
This question is basic mathematics. The difficulty is the coding part.
My code
public class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> ans = new ArrayList<Integer>();
if (matrix == null || matrix.length == 0
|| matrix[0] == null || matrix[0].length == 0) {
return ans;
}
int m = matrix.length;
int n = matrix[0].length;
int a = 0;
int b = 0;
while (a < (m + 1) / 2 && b < (n + 1) / 2) {
// special cases
if (2 * a + 1 == m && 2 * b + 1 == n) {
ans.add(matrix[a][b]);
break;
} else if (2 * a + 1 == m) {
for (int j = b; j <= n - 1 - b; j++) {
ans.add(matrix[a][j]);
}
break;
} else if (2 * b + 1 == n) {
for (int i = a; i <= m - 1 - a; i++) {
ans.add(matrix[i][b]);
}
break;
}
// now is the general case
// first horizontal row without last element
for (int j = b; j < n - 1 - b; j++) {
ans.add(matrix[a][j]);
}
// vertical column on right-hand side
for (int i = a; i < m - 1 - a; i++) {
ans.add(matrix[i][n - 1 - b]);
}
for (int j = n - 1 - b; j > b; j--) {
ans.add(matrix[m - 1 - a][j]);
}
for (int i = m - 1 - a; i > a; i--) {
ans.add(matrix[i][b]);
}
a++;
b++;
}
return ans;
}
}
Updated Oct 29, 2022
public List<Integer> spiralOrder(int[][] matrix) {
int[][] direct = {
{0, 1},
{1, 0},
{0, -1},
{-1, 0}
};
int m = matrix.length;
int n = matrix[0].length;
List<Integer> ans = new LinkedList<Integer>();
boolean[][] visited = new boolean[m][n];
int x = 0;
int y = 0;
int k = 0;
while (ans.size() < m * n) {
visited[x][y] = true;
ans.add(matrix[x][y]);
int nextX = x + direct[k][0];
int nextY = y + direct[k][1];
if (nextX < 0 || nextX >= m
|| nextY < 0 || nextY >= n
|| visited[nextX][nextY]) {
k = (k + 1) % 4;
x += direct[k][0];
y += direct[k][1];
} else {
x = nextX;
y = nextY;
}
}
return ans;
}