Question
Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.
For example,
If n = 4 and k = 2, a solution is:
[ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]
</div>
Stats
Frequency | 4 |
Difficulty | 3 |
Adjusted Difficulty | 3 |
Time to use | ---------- |
Ratings/Color = 1(white) 2(lime) 3(yellow) 4/5(red)
Analysis
This is a very classic problem.
The solution is standard, and we must be able to write it without even using our brain (only use hands).
Solution
Solution 1, recursive DFS calls.
Solution 2, nested loop. Code is shown below.
Code
First, my DFS solution
public ArrayList<ArrayList<Integer>> combine(int n, int k) {
ArrayList<ArrayList<Integer>> ans = new ArrayList<ArrayList<Integer>>();
if (k == 0) return ans;
helper(ans, new ArrayList<Integer>(), n, k, 0, 0);
return ans;
}
private void helper(ArrayList<ArrayList<Integer>> ans,ArrayList<Integer> list,
int n, int k, int curPt, int preNum) {
if (curPt == k) {
ans.add(new ArrayList<Integer>(list));
return;
}
for (int i = preNum + 1; i <= n - k + 1 + curPt; i ++) {
list.add(i);
helper(ans, list, n, k, curPt + 1, i);
list.remove(list.size() - 1);
}
}
Second, my nested for-loop solution
public ArrayList<ArrayList<Integer>> combine(int n, int k) {
ArrayList<ArrayList<Integer>> ans = new ArrayList<ArrayList<Integer>>();
ans.add(new ArrayList<Integer>());
if (n == 0 || k == 0 || k > n) return ans;
ArrayList<ArrayList<Integer>> temp = null;
for (int i = 0; i < k; i ++) {
temp = new ArrayList<ArrayList<Integer>>();
for (ArrayList<Integer> a: ans) {
for (int j = 1; j <= n; j ++) {
if (a.size() > 0 && a.get(a.size() - 1) >= j)
continue;
a.add(j);
temp.add(new ArrayList<Integer>(a));
a.remove(a.size() - 1);
}
}
ans = temp;
}
return ans;
}
Updated June 14th, rewrote the code using template
public List<List<Integer>> combine(int n, int k) {
List<List<Integer>> ans = new LinkedList<List<Integer>>();
if (n == 0 || k == 0 || n < k) {
return ans;
}
helper(ans, new LinkedList<Integer>(), n, k, 1);
return ans;
}
private void helper(List<List<Integer>> ans, List<Integer> path, int n, int k, int pos) {
if (path.size() == k) {
ans.add(new LinkedList<Integer>(path));
return;
}
for (int i = pos; i <= n; i++) {
path.add(i);
helper(ans, path, n, k, i + 1);
path.remove(path.size() - 1);
}
}