Question
Given a set of distinct integers, S, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If S = [1,2,3]
, a solution is:
[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
</div>
Stats
Frequency | 4 |
Difficulty | 3 |
Adjusted Difficulty | 4 |
Time to use | -------- |
Ratings/Color = 1(white) 2(lime) 3(yellow) 4/5(red)
Solution
This is a classic DFS problem. This problem is easily solved by recursive calls. But recursion is always not the best solution.
A popular solution is (since elements got no duplications) adding elements 1 by 1. That is to say, get previous answer, add each list by a new element, and then add each new list back to answer. Continue until all elements are added in sequence. For example:
Initialize the subset: {}
Added element “1”: {}, {“1”}
Added element “2”: {}, {“1”}, {“2”}, {“1”, “2”}
Added element “3”: {}, {“1”}, {“2”}, {“1”, “2”}, {“3”}, {“1”,”3”}, {“2”,”3”}, {“1”, “2”,”3”}
I found a very interesting bit operation solution, and I will also post it below.
Code
First, recursion. This solution is trivial and boring.
public ArrayList<ArrayList<Integer>> subsets(int[] S) {
ArrayList<ArrayList<Integer>> ans = new ArrayList<ArrayList<Integer>>();
if (S.length == 0) {
ans.add(new ArrayList<Integer>());
return ans;
}
Arrays.sort(S);
int head = S[0];
int[] theRest = new int[S.length - 1];
for (int i = 0; i < theRest.length; i++) {
theRest[i] = S[i + 1];
}
ArrayList<ArrayList<Integer>> subAns = subsets(theRest);
for (ArrayList<Integer> oneSet: subAns) {
ArrayList<Integer> longerOneSet = new ArrayList<Integer>();
longerOneSet.add(head);
for (Integer a: oneSet) {
longerOneSet.add(a);
}
ans.add(longerOneSet);
ans.add(oneSet);
}
return ans;
}
Second, add elements 1 by 1
public ArrayList<ArrayList<Integer>> subsets(int[] S) {
ArrayList<ArrayList<Integer>> ans = new ArrayList<ArrayList<Integer>>();
ans.add(new ArrayList<Integer>());
Arrays.sort(S);
for (int i = 0; i < S.length; i ++) {
int curSize = ans.size();
for (int j = 0; j < curSize; j ++) {
ArrayList<Integer> cur = new ArrayList<Integer>(ans.get(j));
cur.add(S[i]);
ans.add(cur);
}
}
return ans;
}
Third, bit operations
public ArrayList<ArrayList<Integer>> subsets(int[] S) {
ArrayList<ArrayList<Integer>> ans = new ArrayList<ArrayList<Integer>>();
Arrays.sort(S);
int N = S.length;
for (int i = 0; i < Math.pow(2, N); ++i) {
ArrayList<Integer> list = new ArrayList<Integer>();
for (int j = 0; j < N; ++j) {
if ((i & (1 << j)) > 0) {
list.add(S[j]);
}
}
ans.add(list);
}
return ans;
}
Updated on June 12th - solution using the ‘Permutation Model’.
public List<List<Integer>> subsets(int[] num) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if(num == null || num.length == 0) {
return result;
}
Arrays.sort(num);
helper(result, new LinkedList<Integer>(), num, 0);
return result;
}
private void helper(List<List<Integer>> ans, List<Integer> path, int[] num, int position) {
ans.add(new LinkedList<Integer>(path));
for (int i = position; i < num.length; i ++) {
path.add(num[i]);
helper(ans, path, num, i + 1);
path.remove(path.size() - 1);
}
}