Template (BFS)

BFS can be implemented using either 2 queues (replacing) or 1 queue. Of course 1 queue is better.

link

public ArrayList<ArrayList<Integer>> levelOrder(TreeNode root) {
    ArrayList result = new ArrayList();

    if (root == null)
        return result;

    Queue<TreeNode> queue = new LinkedList<TreeNode>();
    queue.offer(root);

    while (!queue.isEmpty()) {
        ArrayList<Integer> level = new ArrayList<Integer>(); // important
        int size = queue.size();
        for (int i = 0; i < size; i++) {
            TreeNode head = queue.poll();
            level.add(head.val);
            if (head.left != null)
                queue.offer(head.left);
            if (head.right != null)
                queue.offer(head.right);
        }
        result.add(level); // important
    }

    return result;
}

Question list

BFS

  1. Binary Tree Level Order Traversal

  2. Binary Tree Level Order Traversal II

  3. Binary Tree Zigzag Level Order Traversal

Additional

  1. Construct Binary Tree from Preorder and Inorder

  2. Construct Binary Tree from Inorder and Postorder

Code

First 3 questions are basically same. Below code is for question 1. There is no ‘catch-ya’, it’s very standard code.

public List<List<Integer>> levelOrder(TreeNode root) {
    List<List<Integer>> ans = new LinkedList<List<Integer>>();
    if (root == null) {
        return ans;
    }
    Queue<TreeNode> q = new LinkedList<TreeNode>();
    q.offer(root);
    while(!q.isEmpty()) {
        int size = q.size();
        List<Integer> level = new LinkedList<Integer>();
        for (int i = 0; i < size; i ++) {
            TreeNode node = q.poll();
            level.add(node.val);
            if (node.left != null) {
                q.offer(node.left);
            }
            if (node.right != null) {
                q.offer(node.right);
            }
        }
        ans.add(level);
    }
    return ans;
}

Construct Binary Tree from Preorder and Inorder - written by me

public TreeNode buildTree(int[] preorder, int[] inorder) {
    if (preorder == null || inorder == null || preorder.length != inorder.length) {
        return null;
    }
    return helper(preorder, 0, preorder.length-1, inorder, 0, inorder.length-1);
}

private TreeNode helper(int[] preorder, int a, int b, int[] inorder, int c, int d) {
    if (a > b) {
        return null;
    }
    int headVal = preorder[a];
    TreeNode head = new TreeNode(headVal);
    int p = c;
    while (p <= d) {
        if (inorder[p] == headVal) {
            break;
        }
        p ++;
    }
    head.left = helper(preorder, a+1, a+p-c, inorder, c, p-1);
    head.right = helper(preorder, b-d+p+1, b, inorder, p+1, d);
    return head;
}

Construct Binary Tree from Inorder and Postorder - similar to previous code, copied from ninechap

private int findPosition(int[] arr, int start, int end, int key) {
    int i;
    for (i = start; i <= end; i++) {
        if (arr[i] == key) {
            return i;
        }
    }
    return -1;
}

private TreeNode myBuildTree(int[] inorder, int instart, int inend,
        int[] postorder, int poststart, int postend) {
    if (instart > inend) {
        return null;
    }

    TreeNode root = new TreeNode(postorder[postend]);
    int position = findPosition(inorder, instart, inend, postorder[postend]);

    root.left = myBuildTree(inorder, instart, position - 1,
            postorder, poststart, poststart + position - instart - 1);
    root.right = myBuildTree(inorder, position + 1, inend,
            postorder, poststart + position - instart, postend - 1);
    return root;
}

public TreeNode buildTree(int[] inorder, int[] postorder) {
    if (inorder.length != postorder.length) {
        return null;
    }
    return myBuildTree(inorder, 0, inorder.length - 1, postorder, 0, postorder.length - 1);
}