Question

link

给定两个数组A,B,长度均为n,求A[0]+B[0],…,A[0]+B[n-1],…,A[n-1]+B[0],…,A[n-1]+B[n]总共n^2个数的最大的n个值。

Solution

Use a Heap and then iteratively pop 1 and push 2 elements. Until n values has been filled.

Code

public int[] topN(int[] arr1, int[] arr2, int n) {
	int[] ans = new int[n];
	int index = n - 1;

	PriorityQueue<Pair> heap = new PriorityQueue<Pair>(n,
			new SpecialComparator(arr1, arr2));
	Arrays.sort(arr1);
	Arrays.sort(arr2);

	Pair maxPair = new Pair(n - 1, n - 1);
	heap.add(maxPair);

	for (int i = 0; i < n; i++) {
		Pair next = heap.poll();
		ans[index--] = arr1[next.x] + arr2[next.y];
		if (next.y - 1 >= 0) {
			heap.add(new Pair(next.x, next.y - 1));
		}
		if (next.x - 1 >= 0) {
			heap.add(new Pair(next.x - 1, next.y));
		}
	}
	return ans;
}

class SpecialComparator implements Comparator<Pair> {

	int[] arr1, arr2;

	public SpecialComparator(int[] a1, int[] a2) {
		arr1 = a1;
		arr2 = a2;
	}

	@Override
	public int compare(Pair p1, Pair p2) {
		// note that larger value shall go up top of the heap, so -1 * ...
		return -1 * (arr1[p1.x] + arr2[p1.y] - arr1[p2.x] - arr2[p2.y]);
	}
}