Link: https://leetcode.cn/problems/graph-valid-tree/
Question
difficulty: hard
adj diff: 4
You have a graph of n nodes labeled from 0 to n - 1. You are given an integer n and a list of edges where edges[i] = [ai, bi] indicates that there is an undirected edge between nodes ai and bi in the graph.
Return true if the edges of the given graph make up a valid tree, and false otherwise.
Example 1:
Input: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]]
Output: true
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]
Output: false
Constraints:
1 <= n <= 2000
0 <= edges.length <= 5000
edges[i].length == 2
0 <= ai, bi < n
ai != bi
There are no self-loops or repeated edges.
并查集问题。(参考另一篇帖子,这里先不讨论并查集)
但是也可以用 dfs/bfs 来做。
只需要保证 3 点:
- n 个 node,一定是对应(n-1)个 edge
- 无环
- 无孤岛(所有的 node 都能通过 bfs/dfs 访问一遍)
代码如下:
Code
BFS(注意这段代码,通过双向 directed edge 来判断 circle 的逻辑)
public boolean validTree(int n, int[][] edges) {
//构建邻接矩阵
int[][] graph = new int[n][n];
//有边的元素设置为1,没有边的元素设置为0
for (int[] edge : edges) {
graph[edge[0]][edge[1]] = 1;
graph[edge[1]][edge[0]] = 1;
}
//进行BFS
Queue<Integer> queue = new LinkedList<>();
//从第一个节点开始搜索,这样就不会漏掉无边图的情况
queue.add(0);
boolean[] visited = new boolean[n];
while (!queue.isEmpty()) {
Integer cur = queue.poll();
visited[cur] = true;
//获取邻接点
for (int i = 0; i < n; i++) {
//查看当前节点的邻接点
if (graph[cur][i] == 1) {
//如果访问过,则返回false
if (visited[i])
return false;
//标记邻接点,入队列
visited[i] = true;
//涂黑访问过的节点
graph[cur][i] = 0;
graph[i][cur] = 0;
queue.add(i);
}
}
}
//判断是否为单连通分量
for (int i = 0; i < n; i++) {
if (!visited[i])
return false;
}
return true;
}
DFS(注意这段代码,只判断 n-1edges,以及孤岛,没有判断 circle。也是 work 的)
public boolean validTree(int n, int[][] edges) {
if (edges.length != n - 1) return false;
int[] out = new int[n];
int cnt = 0;
ArrayList<ArrayList<Integer>> graph = new ArrayList<>();
for(int i = 0; i < n; ++i){
graph.add(new ArrayList<>());
}
for(int[] arr: edges){
out[arr[0]]++;
out[arr[1]]++;
graph.get(arr[0]).add(arr[1]);
graph.get(arr[1]).add(arr[0]);
}
Queue<Integer> queue = new LinkedList<>();
for(int i = 0; i < out.length; ++i){
if(out[i] == 1) queue.add(i);
}
while(!queue.isEmpty()){
int size = queue.size();
cnt += size;
for(int s = 0; s < size; ++s){
int temp = queue.poll();
for(int num : graph.get(temp)){
if(--out[num] == 1) queue.add(num);
}
}
}
return cnt == n || (n == 1 && edges.length == 0);
}