Link: https://leetcode.cn/problems/paint-fence/
Question
difficulty: mid
adj diff: 4
You are painting a fence of n posts with k different colors. You must paint the posts following these rules:
Every post must be painted exactly one color.
There cannot be three or more consecutive posts with the same color.
Given the two integers n and k, return the number of ways you can paint the fence.
Example 1:
Input: n = 3, k = 2
Output: 6
Explanation: All the possibilities are shown.
Note that painting all the posts red or all the posts green is invalid because there cannot be three posts in a row with the same color.
Example 2:
Input: n = 1, k = 1
Output: 1
Example 3:
Input: n = 7, k = 2
Output: 42
Constraints:
1 <= n <= 50
1 <= k <= 105
The testcases are generated such that the answer is in the range [0, 231 - 1] for the given n and k.
这是一道很难的 DP 题,虽然代码并不多。
解释如下:
定义 f[n] 表示 n 个栅栏时的总方案数。
1、当 n 为 1 时,上色方案数为 f[1] = k;
2、当 n 为 2 时,第 2 个栅栏的颜色可以和第 1 个一样,也可以不一样,因此总共有 f[2] = f[1] ×
k = k × k 个方案数;
3、当 n > 3 时,给第 n 个栅栏上色时,有两种选择:
3.1 和上一个不同颜色,那么此时第 n 个可以选的颜色有 k-1 个,截至到 n-1 的方案数为 f[n-1],于是此时的方案总数为:f[n-1] × (k-1)
3.2 和上一个相同颜色,那么上一个就不能和上上一个同色,第 n 个可以选的颜色有 k-1 个,第 n-1 个可以选的颜色只有一个,那就是和第 n 个一样的那个,因此截至 n-1 的方案数为 f[n-2] × 1,于是此时的方案总数为:f[n-2] × 1 × (k-1);
3.3 合计两个情况,给 n 个栅栏上色总共有 f[n] = f[n - 1] × (k - 1) + f[n - 2] × (k - 1)
Code
public int numWays(int n, int k) {
if (n <= 1) {
return k * n;
}
int[] dp = new int[n];
dp[0] = k;
dp[1] = k * k;
for (int i = 2; i < n; i++) {
dp[i] = (dp[i-2] + dp[i-1]) * (k-1);
}
return dp[n - 1];
}