Link: https://leetcode.cn/problems/maximum-width-of-binary-tree/
Question
difficulty: mid
adj diff: 3
Given the root of a binary tree, return the maximum width of the given tree.
The maximum width of a tree is the maximum width among all levels.
The width of one level is defined as the length between the end-nodes (the leftmost and rightmost non-null nodes), where the null nodes between the end-nodes that would be present in a complete binary tree extending down to that level are also counted into the length calculation.
It is guaranteed that the answer will in the range of a 32-bit signed integer.
Example 1:
Input: root = [1,3,2,5,3,null,9]
Output: 4
Explanation: The maximum width exists in the third level with length 4 (5,3,null,9).
Example 2:
Input: root = [1,3,2,5,null,null,9,6,null,7]
Output: 7
Explanation: The maximum width exists in the fourth level with length 7 (6,null,null,null,null,null,7).
Example 3:
Input: root = [1,3,2,5]
Output: 2
Explanation: The maximum width exists in the second level with length 2 (3,2).
Constraints:
The number of nodes in the tree is in the range [1, 3000].
-100 <= Node.val <= 100
DFS + 记忆搜索。
其实代码可以更简洁的。看下面。
Code
Mine
List<long[]> levelBoundaries = new LinkedList<long[]>();
long maxWidth = 0;
public int widthOfBinaryTree(TreeNode root) {
dfs(root, 0, 0);
return (int) maxWidth;
}
private void dfs(TreeNode node, int level, long index) {
// for level = i, max # of nodes are: 2 ^ i
if (node == null) return;
if (levelBoundaries.size() <= level) {
levelBoundaries.add(new long[]{index, index});
}
long[] boundary = levelBoundaries.get(level);
boundary[0] = Math.min(boundary[0], index);
boundary[1] = Math.max(boundary[1], index);
maxWidth = Math.max(maxWidth, boundary[1] - boundary[0] + 1);
dfs(node.left, level + 1, index * 2);
dfs(node.right, level + 1, index * 2 + 1);
}
Others
class Solution {
Map<Integer, Integer> levelMin = new HashMap<Integer, Integer>();
public int widthOfBinaryTree(TreeNode root) {
return dfs(root, 1, 1);
}
public int dfs(TreeNode node, int depth, int index) {
if (node == null) {
return 0;
}
levelMin.putIfAbsent(depth, index); // 每一层最先访问到的节点会是最左边的节点,即每一层编号的最小值
return Math.max(index - levelMin.get(depth) + 1, Math.max(dfs(node.left, depth + 1, index * 2), dfs(node.right, depth + 1, index * 2 + 1)));
}
}