Link: https://leetcode.cn/problems/number-of-closed-islands/
Question
difficulty: mid
adj diff: 4
Given a 2D grid consists of 0s (land) and 1s (water). An island is a maximal 4-directionally connected group of 0s and a closed island is an island totally (all left, top, right, bottom) surrounded by 1s.
Return the number of closed islands.
Example 1:
Input: grid = [[1,1,1,1,1,1,1,0],[1,0,0,0,0,1,1,0],[1,0,1,0,1,1,1,0],[1,0,0,0,0,1,0,1],[1,1,1,1,1,1,1,0]]
Output: 2
Explanation:
Islands in gray are closed because they are completely surrounded by water (group of 1s).
Example 2:
Input: grid = [[0,0,1,0,0],[0,1,0,1,0],[0,1,1,1,0]]
Output: 1
Example 3:
Input: grid = [[1,1,1,1,1,1,1],
[1,0,0,0,0,0,1],
[1,0,1,1,1,0,1],
[1,0,1,0,1,0,1],
[1,0,1,1,1,0,1],
[1,0,0,0,0,0,1],
[1,1,1,1,1,1,1]]
Output: 2
Constraints:
1 <= grid.length, grid[0].length <= 100
0 <= grid[i][j] <=1
代码有点长,有点复杂。
好在逻辑简单。单纯的 bfs。
Code
List<int[]> list = new LinkedList<int[]>();
public int closedIsland(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int islands = 0;
// first, mark all border to '1's
for (int i = 0; i < m; i++) {
addToQueue(grid, m, n, i, 0);
addToQueue(grid, m, n, i, n - 1);
}
for (int j = 1; j + 1 < n; j++) {
addToQueue(grid, m, n, 0, j);
addToQueue(grid, m, n, m - 1, j);
}
startDfs(grid, m, n);
// start to find islands
for (int i = 1; i + 1 < m; i++) {
for (int j = 1; j + 1 < n; j++) {
if (grid[i][j] == 1) {
continue;
}
// found an '0', which means a valid island
addToQueue(grid, m, n, i, j);
islands++;
startDfs(grid, m, n);
}
}
return islands;
}
private void startDfs(int[][] grid, int m, int n) {
while (!list.isEmpty()) {
int[] cur = list.remove(0);
addToQueue(grid, m, n, cur[0] - 1, cur[1]);
addToQueue(grid, m, n, cur[0] + 1, cur[1]);
addToQueue(grid, m, n, cur[0], cur[1] - 1);
addToQueue(grid, m, n, cur[0], cur[1] + 1);
}
}
private void addToQueue(int[][] grid, int m, int n, int x, int y) {
if (0 <= x && x < m && 0 <= y && y < n && grid[x][y] == 0) {
list.add(new int[]{x, y});
grid[x][y] = 1;
}
}