Link: https://leetcode.cn/problems/number-of-provinces/
Question
difficulty: mid
adj diff: 3
There are n cities. Some of them are connected, while some are not. If city a is connected directly with city b, and city b is connected directly with city c, then city a is connected indirectly with city c.
A province is a group of directly or indirectly connected cities and no other cities outside of the group.
You are given an n x n matrix isConnected where isConnected[i][j] = 1 if the ith city and the jth city are directly connected, and isConnected[i][j] = 0 otherwise.
Return the total number of provinces.
Example 1:
Input: isConnected = [[1,1,0],[1,1,0],[0,0,1]]
Output: 2
Example 2:
Input: isConnected = [[1,0,0],[0,1,0],[0,0,1]]
Output: 3
Constraints:
1 <= n <= 200
n == isConnected.length
n == isConnected[i].length
isConnected[i][j] is 1 or 0.
isConnected[i][i] == 1
isConnected[i][j] == isConnected[j][i]
这道题不难,只要考察 bfs 代码的数量城都。
一次过。
Code
public int findCircleNum(int[][] isConnected) {
int n = isConnected.length;
int count = 0;
boolean[] visited = new boolean[n];
Queue<Integer> q = new LinkedList<Integer>();
while (true) {
// 1. find a un-visited node from all nodes
for (int i = 0; i < n; i++) {
if (visited[i] == false) {
q.add(i);
count++;
visited[i] = true;
break;
}
}
// 2. start BFS using the node above
if (q.isEmpty()) {
break;
} else {
// mark all adjacent nodes are visited
while (!q.isEmpty()) {
int cur = q.remove();
for (int j = 0; j < n; j++) {
if (j != cur && isConnected[j][cur] == 1 && !visited[j]) {
q.add(j);
visited[j] = true;
}
}
}
}
}
return count;
}
实际上,两个 loop 可以合二为一。
如下(别人的代码):
public int findCircleNum(int[][] isConnected) {
int cities = isConnected.length;
boolean[] visited = new boolean[cities];
int provinces = 0;
Queue<Integer> queue = new LinkedList<Integer>();
for (int i = 0; i < cities; i++) {
if (!visited[i]) {
queue.offer(i);
while (!queue.isEmpty()) {
int j = queue.poll();
visited[j] = true;
for (int k = 0; k < cities; k++) {
if (isConnected[j][k] == 1 && !visited[k]) {
queue.offer(k);
}
}
}
provinces++;
}
}
return provinces;
}