Link: https://leetcode.cn/problems/maximal-square/

Question

difficulty: mid
adj diff: 3

Given an m x n binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.

Example 1:

Input: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
Output: 4

Example 2:

Input: matrix = [["0","1"],["1","0"]]
Output: 1

Example 3:

Input: matrix = [["0"]]
Output: 0

Constraints:

	m == matrix.length
	n == matrix[i].length
	1 <= m, n <= 300
	matrix[i][j] is '0' or '1'.

这道题的重点是 dp 状态转移方程 怎么写:

如下:

dp(i,j)=min(dp(i−1,j),dp(i−1,j−1),dp(i,j−1))+1

一个例子,如下。

0 1 1 1 0
1 1 1 1 0
0 1 1 1 1
0 1 1 1 1
0 0 1 1 1

对应的 dp 值如下。

0 1 1 1 0
1 1 2 2 0
0 1 2 3 1
0 1 2 3 2
0 0 1 2 3

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public int maximalSquare(char[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
int[][] ans = new int[m][n];
int max = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == '0') {
ans[i][j] = 0;
} else if (i == 0 || j == 0) {
ans[i][j] = 1;
} else {
ans[i][j] = Math.min(Math.min(ans[i-1][j], ans[i][j-1]), ans[i-1][j-1]) + 1;
}
max = Math.max(max, ans[i][j]);
}
}
return max * max;
}