Given a 2D grid consists of 0s (land) and 1s (water). An island is a maximal 4-directionally connected group of 0s and a closed island is an island totally (all left, top, right, bottom) surrounded by 1s.
Return the number of closed islands.
Example 1:
Input: grid = [[1,1,1,1,1,1,1,0],[1,0,0,0,0,1,1,0],[1,0,1,0,1,1,1,0],[1,0,0,0,0,1,0,1],[1,1,1,1,1,1,1,0]]
Output: 2
Explanation:
Islands in gray are closed because they are completely surrounded by water (group of 1s).
Example 2:
Input: grid = [[0,0,1,0,0],[0,1,0,1,0],[0,1,1,1,0]]
Output: 1
Example 3:
Input: grid = [[1,1,1,1,1,1,1],
[1,0,0,0,0,0,1],
[1,0,1,1,1,0,1],
[1,0,1,0,1,0,1],
[1,0,1,1,1,0,1],
[1,0,0,0,0,0,1],
[1,1,1,1,1,1,1]]
Output: 2
Constraints:
1 <= grid.length, grid[0].length <= 100
0 <= grid[i][j] <=1
public int closedIsland(int[][] grid) { int m = grid.length; int n = grid[0].length; int islands = 0;
// first, mark all border to '1's for (int i = 0; i < m; i++) { addToQueue(grid, m, n, i, 0); addToQueue(grid, m, n, i, n - 1); } for (int j = 1; j + 1 < n; j++) { addToQueue(grid, m, n, 0, j); addToQueue(grid, m, n, m - 1, j); } startDfs(grid, m, n);
// start to find islands for (int i = 1; i + 1 < m; i++) { for (int j = 1; j + 1 < n; j++) { if (grid[i][j] == 1) { continue; } // found an '0', which means a valid island addToQueue(grid, m, n, i, j); islands++; startDfs(grid, m, n); } }
return islands; }
private void startDfs(int[][] grid, int m, int n) { while (!list.isEmpty()) { int[] cur = list.remove(0); addToQueue(grid, m, n, cur[0] - 1, cur[1]); addToQueue(grid, m, n, cur[0] + 1, cur[1]); addToQueue(grid, m, n, cur[0], cur[1] - 1); addToQueue(grid, m, n, cur[0], cur[1] + 1); } }
private void addToQueue(int[][] grid, int m, int n, int x, int y) { if (0 <= x && x < m && 0 <= y && y < n && grid[x][y] == 0) { list.add(new int[]{x, y}); grid[x][y] = 1; } }