261. Graph Valid Tree
Link: https://leetcode.cn/problems/graph-valid-tree/
Question difficulty: hard adj diff: 4
You have a graph of n nodes labeled from 0 to n - 1. You are given an integer n and a list of edges where edges[i] = [ai, bi] indicates that there is an undirected edge between nodes ai and bi in the graph.
Return true if the edges of the given graph make up a valid tree, and false otherwise.
Example 1:
Input: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]]
Output: true
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]
Output: false
Constraints:
1 <= n <= 2000
0 <= edges.length <= 5000
edges[i].length == 2
0 <= ai, bi < n
ai != bi
There are no self-loops or repeated edges.
并查集问题。(参考另一篇帖子,这里先不讨论并查集)
但是也可以用 dfs/bfs 来做。
只需要保证 3 点:
n 个 node,一定是对应(n-1)个 edge
无环
无孤岛(所有的 node 都能通过 bfs/dfs 访问一遍)
代码如下:
Code BFS(注意这段代码,通过双向 directed edge 来判断 circle 的逻辑)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 public boolean validTree(int n, int[][] edges) { //构建邻接矩阵 int[][] graph = new int[n][n]; //有边的元素设置为1,没有边的元素设置为0 for (int[] edge : edges) { graph[edge[0]][edge[1]] = 1; graph[edge[1]][edge[0]] = 1; } //进行BFS Queue<Integer> queue = new LinkedList<>(); //从第一个节点开始搜索,这样就不会漏掉无边图的情况 queue.add(0); boolean[] visited = new boolean[n]; while (!queue.isEmpty()) { Integer cur = queue.poll(); visited[cur] = true; //获取邻接点 for (int i = 0; i < n; i++) { //查看当前节点的邻接点 if (graph[cur][i] == 1) { //如果访问过,则返回false if (visited[i]) return false; //标记邻接点,入队列 visited[i] = true; //涂黑访问过的节点 graph[cur][i] = 0; graph[i][cur] = 0; queue.add(i); } } } //判断是否为单连通分量 for (int i = 0; i < n; i++) { if (!visited[i]) return false; } return true; }
DFS(注意这段代码,只判断 n-1edges,以及孤岛,没有判断 circle。也是 work 的)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 public boolean validTree(int n, int[][] edges) { if (edges.length != n - 1) return false; int[] out = new int[n]; int cnt = 0; ArrayList<ArrayList<Integer>> graph = new ArrayList<>(); for(int i = 0; i < n; ++i){ graph.add(new ArrayList<>()); } for(int[] arr: edges){ out[arr[0]]++; out[arr[1]]++; graph.get(arr[0]).add(arr[1]); graph.get(arr[1]).add(arr[0]); } Queue<Integer> queue = new LinkedList<>(); for(int i = 0; i < out.length; ++i){ if(out[i] == 1) queue.add(i); } while(!queue.isEmpty()){ int size = queue.size(); cnt += size; for(int s = 0; s < size; ++s){ int temp = queue.poll(); for(int num : graph.get(temp)){ if(--out[num] == 1) queue.add(num); } } } return cnt == n || (n == 1 && edges.length == 0); }